Skip to main content

GMP GUIDLINES

What is GMP?

Good manufacturing practice (GMP) is a system for ensuring that products are consistently produced and controlled according to quality standards. It is designed to minimize the risks involved in any pharmaceutical production that cannot be eliminated through testing the final product. The main risks are: unexpected contamination of products, causing damage to health or even death; incorrect labels on containers, which could mean that patients receive the wrong medicine; insufficient or too much active ingredient, resulting in ineffective treatment or adverse effects. GMP covers all aspects of production; from the starting materials, premises and equipment to the training and personal hygiene of staff. Detailed, written procedures are essential for each process that could affect the quality of the finished product. There must be systems to provide documented proof that correct procedures are consistently followed at each step in the manufacturing process - every time a product is made. WHO has established detailed guidelines for good manufacturing practice. Many countries have formulated their own requirements for GMP based on WHO GMP. Others have harmonized their requirements, for example in the Association of South-East Asian Nations (ASEAN), in the European Union and through the Pharmaceutical Inspection Convention.




Process validation is required, in both general and specific terms, by the Current Good Manufacturing Practice Regulations for Finished Pharmaceuticals, 21 CFR Parts 210 and 211. Examples of such requirements are listed below for informational purposes, and are not all-inclusive.
A requirement for process validation is set forth in general terms in Section 211.100 -- Written procedures; deviations -- which states, in part:


"There shall be written procedures for production and process control designed to assure that the drug products have the identity, strength, quality, and purity they purport or are represented to possess."
Several sections of the CGMP regulations state validation requirements in more specific terms. Excerpts from some of these sections are:
Section 211.110, Sampling and testing of in-process materials and drug products.
(a) "....control procedures shall be established to monitor the output and VALIDATE the performance of those manufacturing processes that may be responsible for causing variability in the characteristics of in-process material and the drug product." (emphasis added)
Section 211.113, Control of Microbiological Contamination.
(b) "Appropriate written procedures, designed to prevent microbiological contamination of drug products purporting to be sterile, shall be established and followed. Such procedures shall include VALIDATION of any sterilization process." (emphasis added)
cGMP REGULATION FOR MEDICAL DEVICES
Process validation is required by the medical device GMP Regulations, 21 CFR Part 820. Section 820.5 requires every finished device manufacturer to:
"...prepare and implement a quality assurance program that is appropriate to the specific device manufactured..."
Section 820.3(n) defines quality assurance as:
"...all activities necessary to verify confidence in the quality of the process used to manufacture a finished device."
When applicable to a specific process, process validation is an essential element in establishing confidence that a process will consistently produce a product meeting the designed quality characteristics.
A generally stated requirement for process validation is contained in section 820.100:

"Written manufacturing specifications and processing procedures shall be established, implemented, and controlled to assure that the device conforms to its original design or any approved changes in that design."


Validation is an essential element in the establishment and implementation of a process procedure, as well as in determining what process controls are required in order to assure conformance to specifications.

Section 820.100(a) (1) states:
"...control measures shall be established to assure that the design basis for the device, components and packaging is correctly translated into approved specifications."
Validation is an essential control for assuring that the specifications for the device and manufacturing process are adequate to produce a device that will conform to the approved design characteristics.
LIST OF SCHEDULES AS PER DR

Popular posts from this blog

Disintegration Time for tablets as per IP, BP and USP

Disintegration Time:- Uncoated Tablet NMT 15 min, in water with Disc 37 0 C ± 2 0 C Coated Tablet NMT 30 min, In water with Disc for Film Coated Tab , and NMT 60 min Other than Film coated tablet Enteric Coated Tab Intact for 2 hr in 0.1 N HCl & disintegrate within 1 hr in Mixed 6.8 Phosphate buffer. According to USP 2 hr in Simulated gastric fluid, then in Simulated Intestinal Fluid. Dispersible/Soluble Within 3 min in water at 25 0 C ± 1 0 C ( IP ) & 15 – 25 0 C ( BP ) Orodispersible Within 1 min Effervescent Tab 5 min in 250 ml water at 20 – 30 0 C ( IP ) & 5  min in 200 ml water at 15-25 0 C ( BP ) Buccal & Sublingual Not Applicable but dissolve within 15 – 30 min. DT Apparatus:- Mesh Apperture:- 2mm (#10), Cycles:- 28 – 32 cycles/min, 50 – 60 mm distance from bottom & top, Temp of water 37 0 C ± 2 0 C. If 1 or 2 tabs fail, repeat for 12 tabs. Click to Buy Here

Weight variation limit for tablet and capsule.

Weight Variation Limits:- 1) For Tablets  IP/BP.                           Limit.                          USP 80 mg or less.             10%                     130mg or less  80 mg to 250mg.       7.5%               130mg to 324mg 250mg or more.          5%               More than 324mg 2) For Capsule:- IP Limit Less than 300mg 10% 300mg or More 7.5%

Basics and use of HVAC system in pharma

HVAC is an essential aspect in pharmaceutical industry as factors like temperature, relative humidity and ventilation have a direct impact on the quality of the pharmaceutical product. The designing of the HVAC should be sorted out while design concept of facility is in progress as it is linked to the architectural layouts like air locks, doorways and lobbies. Once the HVAC system is properly designed and installed it not only helps to create the required room pressure differential cascades but also prevents the cross contamination. Basically an HVAC system works by transferring the heat and moisture into and out of the air and controls the level of the air pollutant either by removing them or diluting them to a particular level. TECHNOLOGY OVERVIEW: HVAC system varies according to the size and installation capacity within a facility but the basic components remain almost the same. LAYOUT OF A TYPICAL BASIC HVAC SYSTEM HEATING SYSTEM: The heat source is either a furnace or ...